martes, 27 de abril de 2010

Resistencia de Patologías a los Antibioticos

El uso desmedido de los antibioticos y sin prescripción medica, estan ayudando a que las bacterias y demas agentes patogenos esten volviendose resistente a los tratamientos con Antibioticos.

Una de las enfermedades de transmisión sexual más comunes del mundo es la gonorrea. Estudios recientes realizados en el Reino Unido arrojaron como resultado que la bacteria que provoca dicha infección, la Neisseria gonorrhoeae, se está haciendo cada vez más resistente a los tratamientos y medicaciones que se desarrollaron para combatirla. Los medicamentos utilizados actualmente para tratar la gonorrea son ceftriaxone y cefixime, que si bien todavía sirven, han mostrado ciertos inconvenientes a la hora de atacar a la bacteria que provoca la enfermedad.

Según explicaron los profesionales de la Agencia de Protección de la Salud de Reino Unido, la Neisseria gonorrheae se adapta fácilmente a los efectos de las medicaciones, motivo por el cual se está transformando en un escollo difícil para los médicos en la actualidad. Si bien los antibióticos no perdieron total efectividad, cada día se hace más complicado llevar a cabo el tratamiento contra la gonorrea asegurándole un ciento por ciento de efectividad al paciente. Los médicos ingleses insisten en que es necesario realizar estudios que permitan desarrollar medicaciones nuevas para contrarrestar a la infección.

Además, se ha especificado que en Japón se dieron casos de pacientes que no pudieron ser curados utilizando el método actual para combatir la enfermedad de transmisión sexual. Este es otro motivo por el cual es necesario encontrar una alternativa para la cura, porque los profesionales insisten en que si no se buscan nuevas formas de tratamiento, se hará más difícil encontrar un método efectivo.

Como recomendación, hay que tener en cuenta que el nivel de gonorrea puede bajar considerablemente teniendo sexo seguro mediante la utilización de preservativos. Es muy importante tenerlo en cuenta para evitar contagios, infertilidad, embarazos ectópicos e inflamación de pelvis sobre todo en las mujeres que la infección por este agente es silencioso y despues de varios dias o meses recien se puedan dar algunos sintomas o signos de dicha patologia.
Fuente: BlogMedicina


En la foto la Neisseria Gonorrheae
Fuente de Imagen: Centro Nacional de Prevención e Información - NPIN

Enzima que previene el Cancer

Según un artículo publicado esta semana en ScienceDaily.com, la prolina deshidrogenasa desempeña un papel importante en la apoptosis, proceso de muerte celular, permitiendo la formación de superóxido, una especie del oxígeno rica en electrones y altamente reactiva. El superóxido participa en la destrucción de células dañadas y, por tanto, es importante para evitar el desarrollo y propagación del cáncer. La proteína prolina deshidrogenasa "se abre para permitir que el oxígeno ‘robe’ electrones" y dar lugar a un superóxido, señala a la revista Tommi A. White , estudiante de doctorado en bioquímica en la Universidad de Missouri-Columbia (MU).

White trabajó con John J. Tanner, profesor de química y bioquímica en el College of Arts and Science de la MU, con Navasona Krishnan, estudiante de doctorado de la Universidad de Nebraska-Lincoln, y con Donald F. Becker, profesor asociado de la Universidad de Nebraska-Lincoln, para crear el primer modelo de prolina deshidrogenasa.

Puesto que no es fácil trabajar con la forma humana de esta enzima, el equipo estudió la prolina deshidrogenasa de la bacteria Thermus thermophilus. Utilizaron estudios bioquímicos y bioinformáticos, para demostrar que esta enzima es funcionalmente similar a la humana y, por tanto, los resultados obtenidos se podrían generalizar para ambas versiones de la enzima.

Por medio de análisis bioquímicos y de cristalografía de rayos X, el equipo creo un modelo de prolina deshidrogenasa capaz de proporcionar a los científicos más información acerca de la estructura de la molécula y sus funciones.

Según Tanner, esta proteína es importante para la prevención del cáncer porque permite la creación de superóxido, una especie que interviene en la muerte celular, el proceso en el que se suelen destruir las células dañadas o enfermas. "Nuestra estructura nos muestra cómo accede el oxígeno a los electrones almacenados en la enzima. Creemos haber identificado una puerta que se abre para permitir el acceso del oxígeno al interior de la enzima donde se encuentran almacenados los electrones", señala Tanner en declaraciones ofrecidas por Science Daily.

Tanner y White esperan continuar el estudio de la prolina deshidrogenasa y de las moléculas que pueden desactivarla. También planean examinar otra proteína que sospechan colabora con la prolina deshidrogenasa, para entender de qué modo dicha proteína puede influir en la capacidad de la prolina deshidrogenasa para prevenir el cáncer.

Fuente: Science Daily

Sangre Artificial: ¿Se podría salvar muchas vidas?

Continuamente se piden donantes de sangre, pero estas donaciones, aunque valiosas, presentan numerosos riesgos para el receptor, incluidas enfermedades como la hepatitis B, C o el VIH. Ahora, según un artículo publicado el 10 de mayo en la versión en línea de The Guardian, Lance Twyman, Doctor por la Universidad de Kent, trabaja en su laboratorio de la Universidad de Sheffield en el desarrollo de una nueva sangre artificial que sería totalmente estéril e incluso se podría fabricar en forma deshidratada. Esto facilitaría su transporte y permitiría almacenarla de cara al futuro, bastando con añadir agua posteriormente para obtener sangre del grupo 0 negativo (el donante universal).

Twyman lleva tiempo intentando crear moléculas que imiten la naturaleza y ha encontrado las porfirinas, moléculas huecas de forma cuadrada que se combinan con metales como el hierro. "El hierro se encuentra en le centro de la molécula, como en el caso de la hemoglobina", señala Twyman. Sin embargo, aunque la hemoglobina de los glóbulos rojos contiene porfirina basada en hierro para unirse al oxigeno de forma reversible (es decir, para poder captar el oxígeno en los pulmones, transportarlo y liberarlo en los tejidos), la profirina no funciona sola, ya que acaba por reaccionar con el oxígeno en lugar de enlazarse simplemente a él. Por ello, según Twyman, es necesario combinar la química de la porfirina con la química de polímeros para obtener una molécula que imite la hemoglobina.

Tras cinco años de desarrollo, combinando la porfirina con monómeros que se autoensamblan en estructura de árbol, Twyman ha logrado una molécula extremadamente similar a la hemoglobina en forma y tamaño y que, además, ofrece el entorno adecuado alrededor del núcleo de la porfirina para que se enlace el hierro y libere el oxígeno. El aspecto de esta sangre artificial es el de una pasta de color rojo oscuro, con la consistencia de la miel y soluble en agua.

El hecho de poner sangre plástica en el cuerpo, aunque sea para salvar una vida, suena arriesgado, pero Twyman señala que las porfirinas son naturales. Según él, el componente polimérico sería ignorado por sistema inmunológico del cuerpo humano y existen usos médicos en la actualidad que reafirman su postura; sin embargo, de momento, su experimento se limita a tubo de ensayo.

Según Twyman, una de las principales aplicaciones sería el campo de batalla o un lugar en el que se haya producido un desastre importante y donde aportar sangre con rapidez pueda salvar muchas vidas ya que, a diferencia de la sangre donada, ésta es fácil de almacenar y se mantiene a temperatura ambiente.

Actualmente, se está desarrollando una segunda generación de moléculas para realizar una investigación más rigurosa y, si todo va bien, el uso en humanos podría ser lo siguiente.

Otros investigadores se muestran escépticos al respecto y señalan que todavía queda mucho por investigar antes de poder afirmar nada.

Fuente: Guardian Technology

Curación Rapida de las heridas

La publicación en Technology Review señala que investigadores de la Universidad de Cincinnati afirman que un gel rico en plaquetas obtenidas de la propia sangre del paciente podría prevenir infecciones en heridas y cortes y acelerar, al mismo tiempo, su curación. Este descubrimiento implica que, en un futuro no distante, un "cocktail" concentrado de la sangre de una persona se podría utilizar en el vendaje de sus heridas, especialmente en pacientes con enfermedades como la diabetes que ralentizan el proceso de curación.

El secreto está en las plaquetas. En los últimos años, los investigadores han experimentado con distintos geles de plaquetas, estudiando sus efectos en la reparación de huesos y curación de hematomas e hinchazón de tejidos. Pero, a pesar de que se han obtenido resultados positivos en algunos casos, David Hom, director de la División de Cirugía Reconstructiva y Cirugía Plástica Facial de la Universidad de Cincinnati, afirma que todavía no está claro de qué manera influirían estos geles en el proceso de curación de heridas en individuos sanos.

En un experimento publicado en la revista Archives of Facial Plastic Surgery, Hom, por aquel entonces en la Facultad de Medicina de la Universidad de Minnesota, y sus colegas estudiaron el efecto de los geles derivados de plaquetas en ocho individuos sanos. Para ello, Hom obtuvo muestras de sangre de cada sujeto y elaboró un gel individual para cada uno de ellos. Tras aplicar una anestesia local se realizaron pequeñas incisiones en los muslos de cada sujeto. Las heridas de una pierna se trataron con el gel y las de la otra con un antibiótico tradicional en pomada. Seis meses después, los sujetos volvieron para continuar el estudio y Hom y sus colegas observaron que las heridas tratadas con el gel se habían curado estadísticamente más rápido que las de control.

Cuando Hom comparó la cantidad de plaquetas presentes en el gel de cada sujeto, descubrió que los individuos con una concentración de plaquetas en gel seis veces superior a la de su sangre se curaban más rápido.

Aunque Hom solo estudió los geles en individuos sanos, afirma que ahora espera hacerlo en pacientes con problemas crónicos de cicatrización de heridas, como diabéticos o personas que estén recibiendo un tratamiento de quimioterapia. Según Robert Grant, Director de la División de Cirugía Plástica de la Universidad de Columbia, la aceleración observada en el proceso de curación de heridas en las personas sanas no es lo suficientemente importante como para considerar que el uso del gel sea rentable; la cuestión es si lo sería en pacientes con múltiples fracturas, que reciben radiaciones o con enfermedades vasculares. Y añadió que serán necesarios más estudios con pacientes de estos grupos para poder llegar a una conclusión.

Fuente: Technology Review